3.414 \(\int (a+b \cos (c+d x)) \sec ^4(c+d x) \, dx\)

Optimal. Leaf size=63 \[ \frac {a \tan ^3(c+d x)}{3 d}+\frac {a \tan (c+d x)}{d}+\frac {b \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac {b \tan (c+d x) \sec (c+d x)}{2 d} \]

[Out]

1/2*b*arctanh(sin(d*x+c))/d+a*tan(d*x+c)/d+1/2*b*sec(d*x+c)*tan(d*x+c)/d+1/3*a*tan(d*x+c)^3/d

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 63, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.210, Rules used = {2748, 3767, 3768, 3770} \[ \frac {a \tan ^3(c+d x)}{3 d}+\frac {a \tan (c+d x)}{d}+\frac {b \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac {b \tan (c+d x) \sec (c+d x)}{2 d} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Cos[c + d*x])*Sec[c + d*x]^4,x]

[Out]

(b*ArcTanh[Sin[c + d*x]])/(2*d) + (a*Tan[c + d*x])/d + (b*Sec[c + d*x]*Tan[c + d*x])/(2*d) + (a*Tan[c + d*x]^3
)/(3*d)

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3767

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin {align*} \int (a+b \cos (c+d x)) \sec ^4(c+d x) \, dx &=a \int \sec ^4(c+d x) \, dx+b \int \sec ^3(c+d x) \, dx\\ &=\frac {b \sec (c+d x) \tan (c+d x)}{2 d}+\frac {1}{2} b \int \sec (c+d x) \, dx-\frac {a \operatorname {Subst}\left (\int \left (1+x^2\right ) \, dx,x,-\tan (c+d x)\right )}{d}\\ &=\frac {b \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac {a \tan (c+d x)}{d}+\frac {b \sec (c+d x) \tan (c+d x)}{2 d}+\frac {a \tan ^3(c+d x)}{3 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.17, size = 60, normalized size = 0.95 \[ \frac {a \left (\frac {1}{3} \tan ^3(c+d x)+\tan (c+d x)\right )}{d}+\frac {b \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac {b \tan (c+d x) \sec (c+d x)}{2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Cos[c + d*x])*Sec[c + d*x]^4,x]

[Out]

(b*ArcTanh[Sin[c + d*x]])/(2*d) + (b*Sec[c + d*x]*Tan[c + d*x])/(2*d) + (a*(Tan[c + d*x] + Tan[c + d*x]^3/3))/
d

________________________________________________________________________________________

fricas [A]  time = 0.79, size = 88, normalized size = 1.40 \[ \frac {3 \, b \cos \left (d x + c\right )^{3} \log \left (\sin \left (d x + c\right ) + 1\right ) - 3 \, b \cos \left (d x + c\right )^{3} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (4 \, a \cos \left (d x + c\right )^{2} + 3 \, b \cos \left (d x + c\right ) + 2 \, a\right )} \sin \left (d x + c\right )}{12 \, d \cos \left (d x + c\right )^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))*sec(d*x+c)^4,x, algorithm="fricas")

[Out]

1/12*(3*b*cos(d*x + c)^3*log(sin(d*x + c) + 1) - 3*b*cos(d*x + c)^3*log(-sin(d*x + c) + 1) + 2*(4*a*cos(d*x +
c)^2 + 3*b*cos(d*x + c) + 2*a)*sin(d*x + c))/(d*cos(d*x + c)^3)

________________________________________________________________________________________

giac [B]  time = 0.52, size = 122, normalized size = 1.94 \[ \frac {3 \, b \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) - 3 \, b \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) - \frac {2 \, {\left (6 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 3 \, b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 4 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 6 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 3 \, b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{3}}}{6 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))*sec(d*x+c)^4,x, algorithm="giac")

[Out]

1/6*(3*b*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - 3*b*log(abs(tan(1/2*d*x + 1/2*c) - 1)) - 2*(6*a*tan(1/2*d*x + 1/
2*c)^5 - 3*b*tan(1/2*d*x + 1/2*c)^5 - 4*a*tan(1/2*d*x + 1/2*c)^3 + 6*a*tan(1/2*d*x + 1/2*c) + 3*b*tan(1/2*d*x
+ 1/2*c))/(tan(1/2*d*x + 1/2*c)^2 - 1)^3)/d

________________________________________________________________________________________

maple [A]  time = 0.08, size = 72, normalized size = 1.14 \[ \frac {2 a \tan \left (d x +c \right )}{3 d}+\frac {a \tan \left (d x +c \right ) \left (\sec ^{2}\left (d x +c \right )\right )}{3 d}+\frac {b \sec \left (d x +c \right ) \tan \left (d x +c \right )}{2 d}+\frac {b \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2 d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*cos(d*x+c))*sec(d*x+c)^4,x)

[Out]

2/3*a*tan(d*x+c)/d+1/3/d*a*tan(d*x+c)*sec(d*x+c)^2+1/2*b*sec(d*x+c)*tan(d*x+c)/d+1/2/d*b*ln(sec(d*x+c)+tan(d*x
+c))

________________________________________________________________________________________

maxima [A]  time = 0.53, size = 70, normalized size = 1.11 \[ \frac {4 \, {\left (\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )\right )} a - 3 \, b {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )}}{12 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))*sec(d*x+c)^4,x, algorithm="maxima")

[Out]

1/12*(4*(tan(d*x + c)^3 + 3*tan(d*x + c))*a - 3*b*(2*sin(d*x + c)/(sin(d*x + c)^2 - 1) - log(sin(d*x + c) + 1)
 + log(sin(d*x + c) - 1)))/d

________________________________________________________________________________________

mupad [B]  time = 2.34, size = 111, normalized size = 1.76 \[ \frac {b\,\mathrm {atanh}\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{d}-\frac {\left (2\,a-b\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5-\frac {4\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{3}+\left (2\,a+b\right )\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{d\,\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6-3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2-1\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*cos(c + d*x))/cos(c + d*x)^4,x)

[Out]

(b*atanh(tan(c/2 + (d*x)/2)))/d - (tan(c/2 + (d*x)/2)^5*(2*a - b) + tan(c/2 + (d*x)/2)*(2*a + b) - (4*a*tan(c/
2 + (d*x)/2)^3)/3)/(d*(3*tan(c/2 + (d*x)/2)^2 - 3*tan(c/2 + (d*x)/2)^4 + tan(c/2 + (d*x)/2)^6 - 1))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (a + b \cos {\left (c + d x \right )}\right ) \sec ^{4}{\left (c + d x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))*sec(d*x+c)**4,x)

[Out]

Integral((a + b*cos(c + d*x))*sec(c + d*x)**4, x)

________________________________________________________________________________________